Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells

EMBO Rep. 2018 Aug;19(8):e46182. doi: 10.15252/embr.201846182. Epub 2018 Jun 7.

Abstract

Toll-like receptors (TLRs) are important sensors that recognize pathogen-associated molecular patterns. Generally, TLR9 is known to recognize bacterial or viral DNA but not viral RNA and initiate an immune response. Herein, we demonstrate that infection with dengue virus (DENV), an RNA virus, activates TLR9 in human dendritic cells (DCs). DENV infection induces release of mitochondrial DNA (mtDNA) into the cytosol and activates TLR9 signaling pathways, leading to production of interferons (IFNs). The DENV-induced mtDNA release involves reactive oxygen species generation and inflammasome activation. DENV infection disrupts the association between transcription factor A mitochondria (TFAM) and mtDNA and activates the mitochondrial permeability transition pores. The side-by-side comparison of TLR9 and cyclic GMP-AMP synthase (cGAS) knockdown reveals that both cGAS and TLR9 comparably contribute to DENV-induced immune activation. The significance of TLR9 in DENV-induced immune response is also confirmed in examination with the bone marrow-derived DCs prepared from Tlr9-knockout mice. Our study unravels a previously unrecognized phenomenon in which infection with an RNA virus, DENV, activates TLR9 signaling by inducing mtDNA release in human DCs.

Keywords: TLR9; dendritic cell; dengue virus; immune response; mitochondrial DNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytosol / metabolism
  • DNA, Mitochondrial / genetics
  • DNA-Binding Proteins / metabolism
  • Dendritic Cells / metabolism*
  • Dendritic Cells / pathology
  • Dendritic Cells / virology*
  • Dengue / metabolism*
  • Dengue / pathology
  • Dengue / virology*
  • Dengue Virus / physiology*
  • Endodeoxyribonucleases / metabolism
  • Extracellular Space / metabolism
  • Gene Knockdown Techniques
  • Humans
  • Inflammasomes / metabolism
  • Interferons / genetics
  • Interferons / metabolism
  • Mice, Knockout
  • Mitochondria / metabolism
  • Mitochondrial Proteins / metabolism
  • Oxidation-Reduction
  • Phosphorylation
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Small Interfering / metabolism
  • RNA, Viral / metabolism*
  • Reactive Oxygen Species / metabolism
  • Signal Transduction*
  • Toll-Like Receptor 9 / metabolism*
  • Transcription Factors / metabolism

Substances

  • DNA, Mitochondrial
  • DNA-Binding Proteins
  • Inflammasomes
  • Mitochondrial Proteins
  • RNA, Messenger
  • RNA, Small Interfering
  • RNA, Viral
  • Reactive Oxygen Species
  • TFAM protein, human
  • TLR9 protein, human
  • Toll-Like Receptor 9
  • Transcription Factors
  • Interferons
  • Endodeoxyribonucleases
  • deoxyribonuclease II