Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures

ACS Appl Mater Interfaces. 2018 Jun 27;10(25):21642-21653. doi: 10.1021/acsami.8b06169. Epub 2018 Jun 18.

Abstract

Development of smart soft actuators is highly important for fundamental research and industrial applications but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermoresponsive poly( N-isopropylacrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1 H-imidazol-3-ium-3-yl)propane-1-sulfonate) (polyVBIPS) layer. Both polyNIPAM and polyVBIPS layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable us to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation, and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative swelling-shrinking properties from both layers. Based on their fast, reversible, and bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two- or multistep methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow us to program different stimuli for soft and intelligent materials applications.

Keywords: actuation; bilayer hydrogel; double network; stimuli response; zwitterion materials.