Room-temperature quantum cascade superluminescent light emitters with wide bandwidth and high temperature stability

Opt Express. 2018 May 28;26(11):13730-13739. doi: 10.1364/OE.26.013730.

Abstract

The realization of room-temperature (RT) mid-infrared (MIR) broadband light sources is fundamentally interesting and highly desirable for a number of applications. Recently, superluminescent light emitters (SLEs) based on quantum cascade (QC) structures have emerged as excellent candidates among mid-infrared broadband light sources. However, it is challenging to achieve RT-QCSLEs due to the very low efficiency of the spontaneous emission in the intersubband transitions. Here, we demonstrate the realization of a set of ~5 μm RT-SLEs under continuous wave (CW) or quasi-CW (10% duty circle) operation by using a two-phonon resonant QC active region and monolithic integrated waveguide structures. In addition, with the design of an inclined tapered cavity, the SLEs exhibit high milliwatt power, large spectral width of more than 200 cm-1 and good temperature characteristic. These demonstrated results are believed to be a big step forward to the applications of broadband MIR semiconductor light sources.