Role of the Prefrontal Cortex in Pain Processing

Mol Neurobiol. 2019 Feb;56(2):1137-1166. doi: 10.1007/s12035-018-1130-9. Epub 2018 Jun 6.

Abstract

The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a 'loop' where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.

Keywords: Antinociception; Nociception; Pain; Prefrontal cortex.

Publication types

  • Review

MeSH terms

  • Animals
  • Dopamine / metabolism
  • Humans
  • Neural Pathways / metabolism
  • Neural Pathways / physiopathology
  • Pain / metabolism
  • Pain / physiopathology*
  • Pain Perception / physiology*
  • Prefrontal Cortex / metabolism
  • Prefrontal Cortex / physiopathology*

Substances

  • Dopamine