Decoding the chemotactic signal

J Leukoc Biol. 2018 Aug;104(2):359-374. doi: 10.1002/JLB.1MR0218-044. Epub 2018 Jun 6.

Abstract

From an individual bacterium to the cells that compose the human immune system, cellular chemotaxis plays a fundamental role in allowing cells to navigate, interpret, and respond to their environments. While many features of cellular chemotaxis are shared among systems as diverse as bacteria and human immune cells, the machinery that guides the migration of these model organisms varies widely. In this article, we review current literature on the diversity of chemoattractant ligands, the cell surface receptors that detect and process chemotactic gradients, and the link between signal recognition and the regulation of cellular machinery that allow for efficient directed cellular movement. These facets of cellular chemotaxis are compared among E. coli, Dictyostelium discoideum, and mammalian neutrophils to derive organizational principles by which diverse cell systems sense and respond to chemotactic gradients to initiate cellular migration.

Keywords: G protein-coupled receptor; chemotaxis; communication theory; methyl-accepting chemotaxis protein receptor.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Chemotaxis / physiology*
  • Humans
  • Signal Transduction / physiology