Nontrivial Nature and Penetration Depth of Topological Surface States in SmB_{6} Thin Films

Phys Rev Lett. 2018 May 18;120(20):207206. doi: 10.1103/PhysRevLett.120.207206.

Abstract

The nontrivial feature and penetration depth of the topological surface states (TSS) in SmB_{6} were studied via spin pumping. The experiments used SmB_{6} thin films grown on the bulk magnetic insulator Y_{3}Fe_{5}O_{12} (YIG). Upon the excitation of magnetization precession in the YIG, a spin current is generated in the SmB_{6} that produces, via spin-orbit coupling, a lateral electrical voltage in the film. This spin-pumping voltage signal becomes considerably stronger as the temperature decreases from 150 to 10 K, and such an enhancement most likely originates from the spin-momentum locking of the TSS and may thereby serve as evidence for the nontrivial nature of the TSS. The voltage data also show a unique film thickness dependence that suggests a TSS depth of ∼32 nm. The spin-pumping results are supported by transport measurements and analyses using a tight binding model.