Explosion limits of hydrogen-oxygen mixtures from nonequilibrium critical points

Phys Chem Chem Phys. 2018 Jun 13;20(23):15746-15752. doi: 10.1039/c8cp00905h.

Abstract

The explosion limits of hydrogen-oxygen mixtures are macroscopic, temperature-pressure boundaries that divide the overall chemistry of hydrogen oxidation into slow-burning and explosive regimes. Here, we demonstrate that it is possible to recover the three chemical explosion limits of H2/O2 mixtures from nonequilibrium stochastic trajectories. This demonstration relies on the finding that, in explosive regimes, these trajectories have the quantitative features of a dynamical phase transition. Through computer simulations for both a generic and a reduced model for hydrogen oxidation, we find only one dominant reactive phase at temperatures below the explosion limits. At temperatures above the limits, however, a second phase transiently emerges from the chemistry. By locating the pseudo-critical temperature where two reactive phases are distinguishable, we construct all three explosion-limit boundaries for model hydrogen-oxygen mixtures of finite size.