Platinum(ii) complexes of mixed-valent radicals derived from cyclotricatechylene, a macrocyclic tris-dioxolene

Chem Sci. 2015 Dec 1;6(12):6935-6948. doi: 10.1039/c5sc02776d. Epub 2015 Aug 20.

Abstract

Three complexes of cyclotricatechylene (H6ctc), [{PtL}33-ctc)], have been synthesised: (L = 1,2-bis(diphenylphosphino)benzene {dppb}, 1; L = 1,2-bis(diphenylphosphino)ethane {dppe}, 2; L = 4,4'-bis(tert-butyl)-2,2'-bipyridyl { t Bu2bipy}, 3). The complexes show three low-potential, chemically reversible voltammetric oxidations separated by ca. 180 mV, corresponding to stepwise oxidation of the [ctc]6- catecholato rings to the semiquinonate level. The redox series [1]0/1+/2+/3+ and [3]0/1+/2+/3+ have been characterised by UV/vis/NIR spectroelectrochemistry. The mono- and di-cations have class II mixed valent character, with reduced radical delocalisation compared to an analogous bis-dioxolene system. The SOMO composition of [1˙]+ and [3˙]+ has been delineated by cw EPR, ENDOR and HYSCORE spectroscopies, with the aid of two monometallic model compounds [PtL(DBsq˙)]+ (DBsqH = 3,5-bis(tert-butyl)-1,2-benzosemiquinone; L = dppe or t Bu2bipy). DF and time-dependent DF calculations confirm these interpretations, and demonstrate changes to spin-delocalisation in the ctc macrocycle as it is sequentially oxidised.