Systematic Identification of Druggable Epithelial-Stromal Crosstalk Signaling Networks in Ovarian Cancer

J Natl Cancer Inst. 2019 Mar 1;111(3):272-282. doi: 10.1093/jnci/djy097.

Abstract

Background: Bulk tumor tissue samples are used for generating gene expression profiles in most research studies, making it difficult to decipher the stroma-cancer crosstalk networks. In the present study, we describe the use of microdissected transcriptome profiles for the identification of cancer-stroma crosstalk networks with prognostic value, which presents a unique opportunity for developing new treatment strategies for ovarian cancer.

Methods: Transcriptome profiles from microdissected ovarian cancer-associated fibroblasts (CAFs) and ovarian cancer cells from patients with high-grade serous ovarian cancer (n = 70) were used as input data for the computational systems biology program CCCExplorer to uncover crosstalk networks between various cell types within the tumor microenvironment. The crosstalk analysis results were subsequently used for discovery of new indications for old drugs in ovarian cancer by computational ranking of candidate agents. Survival analysis was performed on ovarian tumor-bearing Dicer/Pten double-knockout mice treated with calcitriol, a US Food and Drug Administration-approved agent that suppresses the Smad signaling cascade, or vehicle control (9-11 mice per group). All statistical tests were two-sided.

Results: Activation of TGF-β-dependent and TGF-β-independent Smad signaling was identified in a particular subtype of CAFs and was associated with poor patient survival (patients with higher levels of Smad-regulated gene expression by CAFs: median overall survival = 15 months, 95% confidence interval [CI] = 12.7 to 17.3 months; vs patients with lower levels of Smad-regulated gene expression: median overall survival = 26 months, 95% CI = 15.9 to 36.1 months, P = .02). In addition, the activated Smad signaling identified in CAFs was found to be targeted by repositioning calcitriol. Calcitriol suppressed Smad signaling in CAFs, inhibited tumor progression in mice, and prolonged the median survival duration of ovarian cancer-bearing mice from 36 to 48 weeks (P = .04).

Conclusions: Our findings suggest the feasibility of using novel multicellular systems biology modeling to identify and repurpose known drugs targeting cancer-stroma crosstalk networks, potentially leading to faster and more effective cures for cancers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Cancer-Associated Fibroblasts / drug effects
  • Cancer-Associated Fibroblasts / metabolism*
  • Cancer-Associated Fibroblasts / pathology
  • Cell Proliferation
  • Cystadenocarcinoma, Serous / drug therapy
  • Cystadenocarcinoma, Serous / metabolism
  • Cystadenocarcinoma, Serous / pathology
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Gene Regulatory Networks
  • Humans
  • Ovarian Neoplasms / drug therapy
  • Ovarian Neoplasms / metabolism*
  • Ovarian Neoplasms / pathology
  • Prognosis
  • Signal Transduction
  • Survival Rate
  • Transforming Growth Factor beta / genetics
  • Transforming Growth Factor beta / metabolism*
  • Tumor Cells, Cultured
  • Tumor Microenvironment / drug effects*
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor
  • Transforming Growth Factor beta