Total synthesis of cyrneines A-B and glaucopine C

Nat Commun. 2018 Jun 1;9(1):2148. doi: 10.1038/s41467-018-04480-6.

Abstract

The cyrneine diterpenoids represent a structurally intriguing subfamily of cyathane diterpenoids and could significantly induce neurite outgrowth. Therefore, the efficient synthesis of these natural products is of great importance. Herein, we present a route for the collective synthesis of cyrneines A, B, and glaucopine C. As the key precursor, the 5-6-6-tricyclic scaffold is efficiently constructed by employing a mild Suzuki coupling of heavily substituted nonactivated cyclopentenyl triflate and a chelation-controlled regiospecific Friedel-Crafts cyclization as key transformations. The stereoselective installation of the all-carbon quaternary center at C6 ring junction of the tricycle is achieved via Birch reductive methylation. Subsequently, a carbenoid-mediated ring expansion furnishes the essential 5-6-7-tricyclic core. Finally, manipulation of this core by several appropriately orchestrated conversions accomplishes a more step-economic synthesis of cyrneine A (20 steps), and the first synthesis of cyrneine B (24 steps) and glaucopine C (23 steps).

Publication types

  • Research Support, Non-U.S. Gov't