Evaluation of different analysis pipelines for the detection of HIV-1 minority resistant variants

PLoS One. 2018 Jun 1;13(6):e0198334. doi: 10.1371/journal.pone.0198334. eCollection 2018.

Abstract

Objective: Reliable detection of HIV minority resistant variants (MRVs) requires bioinformatics analysis with specific algorithms to obtain good quality alignments. The aim of this study was to analyze ultra-deep sequencing (UDS) data using different analysis pipelines.

Methods: HIV-1 protease, reverse transcriptase (RT) and integrase sequences from antiretroviral-naïve patients were obtained using GS-Junior® (Roche) and MiSeq® (Illumina) platforms. MRVs were defined as variants harbouring resistance-mutation present at a frequency of 1%-20%. Reads were analyzed using different alignment algorithms: Amplicon Variant Analyzer®, Geneious® compared to SmartGene® NGS HIV-1 module.

Results: 101 protease and 51 RT MRVs identified in 139 protease and 124 RT sequences generated with a GS-Junior® platform were analyzed using AVA® and SmartGene® software. The correlation coefficients for the MRVs were R2 = 0.974 for protease and R2 = 0.972 for RT. Discordances (n = 13 in protease and n = 15 in RT) mainly concerned low-level MRVs (i.e., with frequencies of 1%-2%, n = 18/28) and they were located in homopolymeric regions (n = 10/15). Geneious® and SmartGene® software were used to analyze 143 protease, 45 RT and 26 integrase MRVs identified in 172 protease, 69 RT, and 72 integrase sequences generated with a MiSeq® platform. The correlation coefficients for the MRVs were R2 = 0.987 for protease, R2 = 0.995 for RT and R2 = 0.993 for integrase. Discordances (n = 9 in protease, n = 3 in RT, and n = 3 in integrase) mainly concerned low-level MRVs (n = 13/15).

Conclusion: We found an excellent correlation between the various UDS analysis pipelines that we tested. However, our results indicate that specific attention should be paid to low-level MRVs, for which the use of two different analysis pipelines and visual inspection of sequences alignments might be beneficial. Thus, our results argue for use of a 2% threshold for MRV detection, rather than the 1% threshold, to minimize misalignments and time-consuming sight reading steps essential to ensure accurate results for MRV frequencies below 2%.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-HIV Agents / therapeutic use*
  • DNA Mutational Analysis / methods*
  • Drug Resistance, Viral / genetics*
  • Gene Frequency
  • HIV Infections / drug therapy*
  • HIV Infections / virology*
  • HIV Integrase / genetics
  • HIV Protease / genetics
  • HIV Reverse Transcriptase / genetics
  • HIV-1 / genetics*
  • High-Throughput Nucleotide Sequencing / methods
  • Humans
  • Microbial Sensitivity Tests
  • Mutation*
  • Sequence Alignment

Substances

  • Anti-HIV Agents
  • HIV Integrase
  • HIV Reverse Transcriptase
  • HIV Protease
  • p16 protease, Human immunodeficiency virus 1

Grants and funding

The research leading has received funding from the French National Agency for Research on AIDS and Viral Hepatitis (ANRS).