Focused anti-scatter grid for background reduction in x-ray fluorescence tomography

Opt Lett. 2018 Jun 1;43(11):2591-2594. doi: 10.1364/OL.43.002591.

Abstract

X-ray fluorescence (XRF) tomography is an emerging imaging technology with the potential for high spatial resolution molecular imaging. One of the key limitations is the background noise due to Compton scattering since it degrades the signal and limits the sensitivity. In this Letter, we present a linear focused anti-scatter grid that reduces the Compton scattering background. An anti-scatter grid was manufactured and evaluated both experimentally and theoretically with Monte Carlo simulations. The measurements showed a 31% increase in signal-to-background ratio, and simulations of an improved grid showed that this can easily be extended up to >75%. Simulated tomographies using the improved grid show a large improvement in reconstruction quality. The anti-scatter grid will be important for in vivo XRF tomography since the background reduction allows for faster scan times, lower doses, and lower nanoparticle concentrations.