Transcriptome analysis of the reef-building octocoral, Heliopora coerulea

Sci Rep. 2018 May 30;8(1):8397. doi: 10.1038/s41598-018-26718-5.

Abstract

The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These findings thus offer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa / genetics*
  • Anthozoa / metabolism
  • Coral Reefs*
  • Gene Expression Profiling*
  • Minerals / metabolism
  • Molecular Sequence Annotation
  • Sequence Analysis, RNA

Substances

  • Minerals