Hetero-Multivalency of Pseudomonas aeruginosa Lectin LecA Binding to Model Membranes

Sci Rep. 2018 May 30;8(1):8419. doi: 10.1038/s41598-018-26643-7.

Abstract

A single glycan-lectin interaction is often weak and semi-specific. Multiple binding domains in a single lectin can bind with multiple glycan molecules simultaneously, making it difficult for the classic "lock-and-key" model to explain these interactions. We demonstrated that hetero-multivalency, a homo-oligomeric protein simultaneously binding to at least two types of ligands, influences LecA (a Pseudomonas aeruginosa adhesin)-glycolipid recognition. We also observed enhanced binding between P. aeruginosa and mixed glycolipid liposomes. Interestingly, strong ligands could activate weaker binding ligands leading to higher LecA binding capacity. This hetero-multivalency is probably mediated via a simple mechanism, Reduction of Dimensionality (RD). To understand the influence of RD, we also modeled LecA's two-step binding process with membranes using a kinetic Monte Carlo simulation. The simulation identified the frequency of low-affinity ligand encounters with bound LecA and the bound LecA's retention of the low-affinity ligand as essential parameters for triggering hetero-multivalent binding, agreeing with experimental observations. The hetero-multivalency can alter lectin binding properties, including avidities, capacities, and kinetics, and therefore, it likely occurs in various multivalent binding systems. Using hetero-multivalency concept, we also offered a new strategy to design high-affinity drug carriers for targeted drug delivery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adhesins, Bacterial / chemistry*
  • Adhesins, Bacterial / metabolism*
  • Kinetics
  • Ligands
  • Liposomes / metabolism*
  • Monte Carlo Method
  • Protein Binding
  • Pseudomonas aeruginosa*

Substances

  • Adhesins, Bacterial
  • LecA protein, bacteria
  • Ligands
  • Liposomes