Phenol-Formaldehyde Resin for Optical-Chemical Temperature Sensing

Sensors (Basel). 2018 May 30;18(6):1756. doi: 10.3390/s18061756.

Abstract

The application of phenol-formaldehyde (PF) resin as an optical temperature sensor is investigated. Recent developments in optical luminescent sensors allow for global measurements to be made over the surface of a test article, extending beyond conventional point measurements. Global temperature distributions are particularly helpful when validating computational models or when mapping temperature over complex geometries, and can be used to calculate surface heat flux values. Temperature-sensitive paint (TSP) is a novel chemical approach to obtaining these global temperature measurements, but there are still challenges to overcome to make it a reliable tool. A sensor with a wide range of temperature sensitivity is desired to provide the maximum amount of utility, especially for tests spanning large temperature gradients. Naturally luminescent materials such as PF resin provide an attractive alternative to chemical sensor coatings, and PF resin is studied for this reason. Static tests of different PF resin samples are conducted using two binder materials to strengthen the material: cloth and paper. The material shows temperature sensitivities up to -0.8%/K, demonstrating the usefulness of PF resin as a temperature sensor.

Keywords: heat transfer; optical diagnostics; phenol-formaldehyde resin; surface temperature measurement; temperature-sensitive paint.