Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/Cu7S4/g-C3N4 Ternary Heterostructures

ACS Appl Mater Interfaces. 2018 Jun 20;10(24):20404-20411. doi: 10.1021/acsami.8b02984. Epub 2018 Jun 7.

Abstract

Hydrogen production through photocatalytic water splitting has attracted much attention because of its potential to solve the issues of environmental pollution and energy shortage. In this work, CdS/Cu7S4/g-C3N4 ternary heterostructures are fabricated by ion exchange between CdS and Cu+ and subsequent ultrasonication-assisted self-assembly of CdS/Cu7S4 and g-C3N4, which provide excellent visible-light photocatalytic activity for hydrogen evolution without any noble metal cocatalyst. With the presence of p-n junction, tuned band gap alignments, and higher charge carrier density in the CdS/Cu7S4/g-C3N4 ternary heterostructures that can effectively promote the spatial separation and prolong the lifetime of photogenerated electrons, a high hydrogen evolution rate of 3570 μmol g-1 h-1, an apparent quantum yield of 4.4% at 420 nm, and remarkable recycling stability are achieved. We believe that the as-synthesized CdS/Cu7S4/g-C3N4 ternary heterostructures can be promising noble metal-free catalysts for enhanced hydrogen production from photocatalytic water splitting.

Keywords: CdS/Cu7S4/g-C3N4; noble metal-free; photocatalytic hydrogen production; ternary heterostructures; visible light.