Cardiomyocyte lethality by multidirectional stimuli

Med Biol Eng Comput. 2018 Dec;56(12):2177-2184. doi: 10.1007/s11517-018-1848-6. Epub 2018 May 30.

Abstract

Multidirectional defibrillation protocols have shown better efficiency than monodirectional; still, no testing was performed to assess cell lethality. We investigated lethality of multidirectional defibrillator-like shocks on isolated cardiomyocytes. Cells were isolated from adult male Wistar rats and plated into a perfusion chamber. Electrical field stimulation threshold (ET) was obtained, and cells were paced with suprathreshold bipolar electrical field (E) pulses. Either one monodirectional high-intensity electrical field (HEF) pulse aligned at 0° (group Mono0) or 60° (group Mono60) to cell major axis or a multidirectional sequence of three HEF pulses aligned at 0°, 60°, and 120° each was applied. If cell recovered from shock, pacing was resumed, and a higher amplitude HEF, proportional to ET, was applied. The sequence was repeated until cell death. Lethality curves were built by means of survival analysis from sub-lethal and lethal E. Non-linear fit was performed, and E values corresponding to 50% probability of lethality (E50) were compared. Multidirectional groups presented lethality curves similar to Mono0. Mono60 displayed the highest E50. The novel data endorse the idea of multidirectional stimuli being safer because their effects on lethality of individual cells were equal to a single monodirectional stimulus, while their defibrillatory threshold is lower. Graphical abstract Monodirectional and multidirectional lethality protocol comparison on isolated rat cardiomyocytes. The heart image is a derivative of "3D Heart in zBrush" ( https://vimeo.com/65568770 ) by Laloxl, used under CC BY 3.0 ( https://creativecommons.org/licenses/by/3.0/legalcode )/image extracted from original video.

Keywords: Defibrillation; Electrical field stimulation; Isolated ventricular myocytes.

MeSH terms

  • Animals
  • Cell Death
  • Electric Countershock
  • Electric Stimulation / instrumentation
  • Electric Stimulation / methods*
  • Equipment Design
  • Male
  • Myocytes, Cardiac / physiology*
  • Probability
  • Rats, Wistar