Therapeutic targeting of cathepsin C: from pathophysiology to treatment

Pharmacol Ther. 2018 Oct:190:202-236. doi: 10.1016/j.pharmthera.2018.05.011. Epub 2018 May 26.

Abstract

Cathepsin C (CatC) is a highly conserved tetrameric lysosomal cysteine dipeptidyl aminopeptidase. The best characterized physiological function of CatC is the activation of pro-inflammatory granule-associated serine proteases. These proteases are synthesized as inactive zymogens containing an N-terminal pro-dipeptide, which maintains the zymogen in its inactive conformation and prevents premature activation, which is potentially toxic to the cell. The activation of serine protease zymogens occurs through cleavage of the N-terminal dipeptide by CatC during cell maturation in the bone marrow. In vivo data suggest that pharmacological inhibition of pro-inflammatory serine proteases would suppress or attenuate deleterious effects mediated by these proteases in inflammatory/auto-immune disorders. The pathological deficiency in CatC is associated with Papillon-Lefèvre syndrome (PLS). The patients however do not present marked immunodeficiency despite the absence of active serine proteases in immune defense cells. Hence, the transitory pharmacological blockade of CatC activity in the precursor cells of the bone marrow may represent an attractive therapeutic strategy to regulate activity of serine proteases in inflammatory and immunologic conditions. A variety of CatC inhibitors have been developed both by pharmaceutical companies and academic investigators, some of which are currently being employed and evaluated in preclinical/clinical trials.

Keywords: Cathepsin C; Elastase; Inflammatory/autoimmune diseases; Papillon-Lefèvre syndrome; Pharmacological targeting; Proteinase 3; Serine proteases; Therapeutic inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Autoimmune Diseases / drug therapy*
  • Autoimmune Diseases / physiopathology
  • Cathepsin C / antagonists & inhibitors*
  • Cathepsin C / metabolism
  • Drug Development / methods
  • Humans
  • Inflammation / drug therapy*
  • Inflammation / physiopathology
  • Papillon-Lefevre Disease / drug therapy
  • Papillon-Lefevre Disease / physiopathology
  • Serine Proteases / metabolism

Substances

  • Serine Proteases
  • Cathepsin C