Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum

Plant Cell Environ. 2018 Oct;41(10):2390-2403. doi: 10.1111/pce.13352. Epub 2018 Jul 3.

Abstract

Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study, alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and phospholipase D delta suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates that the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion.

Keywords: cell membranes; lipid droplets; lipid metabolism; lipid signalling; membrane remodelling; plant abiotic stress; plastoglobules; salt tolerance; triacylglycerides; trichomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lipid Metabolism*
  • Membrane Lipids / metabolism
  • Mesembryanthemum / cytology
  • Mesembryanthemum / metabolism*
  • Phosphatidic Acids / metabolism
  • Phosphatidylcholines / metabolism
  • Plant Epidermis / cytology*
  • Plant Epidermis / metabolism
  • Plant Leaves / cytology
  • Plant Leaves / metabolism
  • Plant Stems / cytology
  • Plant Stems / metabolism
  • Salt Stress
  • Salt-Tolerant Plants / cytology
  • Salt-Tolerant Plants / metabolism*
  • Sodium / metabolism
  • Triglycerides / metabolism

Substances

  • Membrane Lipids
  • Phosphatidic Acids
  • Phosphatidylcholines
  • Triglycerides
  • Sodium