Crystallography Coupled with Kinetic Analysis Provides Mechanistic Underpinnings of a Nicotine-Degrading Enzyme

Biochemistry. 2018 Jul 3;57(26):3741-3751. doi: 10.1021/acs.biochem.8b00384. Epub 2018 Jun 13.

Abstract

Nicotine oxidoreductase (NicA2) is a bacterial flavoenzyme, which catalyzes the first step of nicotine catabolism by oxidizing S-nicotine into N-methyl-myosmine. It has been proposed as a biotherapeutic for nicotine addiction because of its nanomolar substrate binding affinity. The first crystal structure of NicA2 has been reported, establishing NicA2 as a member of the monoamine oxidase (MAO) family. However, substrate specificity and structural determinants of substrate binding and/or catalysis have not been explored. Herein, analysis of the pH-rate profile, single-turnover kinetics, and binding data establish that pH does not significantly affect the catalytic rate and product release is not rate-limiting. The X-ray crystal structure of NicA2 with S-nicotine refined to 2.65 Å resolution reveals a hydrophobic binding site with a solvent exclusive cavity. Hydrophobic interactions predominantly orient the substrate, promoting the binding of a deprotonated species and supporting a hydride-transfer mechanism. Notably, NicA2 showed no activity against neurotransmitters oxidized by the two isoforms of human MAO. To further probe the substrate range of NicA2, enzyme activity was evaluated using a series of substrate analogues, indicating that S-nicotine is the optimal substrate and substitutions within the pyridyl ring abolish NicA2 activity. Moreover, mutagenesis and kinetic analysis of active-site residues reveal that removal of a hydrogen bond between the pyridyl ring of S-nicotine and the hydroxyl group of T381 has a 10-fold effect on KM, supporting the role of this bond in positioning the catalytically competent form of the substrate. Together, crystallography combined with kinetic analysis provides a deeper understanding of this enzyme's remarkable specificity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Catalytic Domain
  • Crystallography, X-Ray
  • Hydrogen-Ion Concentration
  • Hydrophobic and Hydrophilic Interactions
  • Kinetics
  • Models, Molecular
  • Monoamine Oxidase / chemistry
  • Monoamine Oxidase / metabolism
  • Nicotine / chemistry
  • Nicotine / metabolism*
  • Oxidoreductases / chemistry
  • Oxidoreductases / metabolism*
  • Pseudomonas putida / chemistry
  • Pseudomonas putida / enzymology*
  • Pseudomonas putida / metabolism
  • Substrate Specificity

Substances

  • Bacterial Proteins
  • Nicotine
  • Oxidoreductases
  • Monoamine Oxidase