Cytotoxic, tubulin-interfering and proapoptotic activities of 4'-methylthio-trans-stilbene derivatives, analogues of trans-resveratrol

Cytotechnology. 2018 Oct;70(5):1349-1362. doi: 10.1007/s10616-018-0227-3. Epub 2018 May 28.

Abstract

The aim of this study was to evaluate the cytotoxicity of a series of seven 4'-methylthio-trans-stilbene derivatives against cancer cells: MCF7 and A431 in comparison with non-tumorigenic MCF12A and HaCaT cells. The mechanism of anti-proliferative activity of the most cytotoxic trans-resveratrol analogs: 3,4,5-trimethoxy-4'-methylthio-trans-stilbene (3,4,5-MTS) and 2,4,5-trimethoxy-4'-methylthio-trans-stilbene (2,4,5-MTS) was analyzed and compared with the effect of trans-resveratrol. All the compounds that were studied exerted a stronger cytotoxic effect than trans-resveratrol did. MCF7 cells were the most sensitive to the cytotoxic effect of trans-resveratrol analogs with IC50 in the range of 2.1-6.0 µM. Comparing the cytotoxicity of 3,4,5-MTS and 2,4,5-MTS, a significantly higher cytotoxic activity of these compounds against MCF7 versus MCF12A was observed, whereas no significant difference was observed in cytotoxicity against A431 and HaCaT. In the series of 4'-methylthio-trans-stilbenes, 3,4,5-MTS and 2,4,5-MTS were the most promising compounds for further mechanistic studies. The proapoptotic activity of 3,4,5-MTS and 2,4,5-MTS, estimated with the use of annexin-V/propidium iodide assay, was comparable to that of trans-resveratrol. An analysis of cell cycle distribution showed a significant increase in the percentage of apoptotic cells and G2/M phase arrest in MCF7 and A431 as a result of treatment with 3,4,5-MTS, whereas trans-resveratrol tended to increase the percentage of cells in S phase, particularly in epithelial breast cells MCF12A and MCF7. Both trans-stilbene derivatives enhanced potently tubulin polymerization in a dose-dependent manner with sulfur atom participating in the interactions with critical residues of the paclitaxel binding site of β-tubulin.

Keywords: Apoptosis; Cytotoxicity; Resveratrol; Stilbenes; Tubulin polymerization.