Self-assembly of flexible graphene hydrogel electrode based on crosslinked pectin-cations

Carbohydr Polym. 2018 Sep 1:195:593-600. doi: 10.1016/j.carbpol.2018.04.078. Epub 2018 Apr 23.

Abstract

Pectin, natural polysaccharide biopolymer, was chelated with cations (Mg2+/Ca2+) to form an interwoven framework. Herein, the graphene hydrogel electrodes were self-assembled by the synergistic effects of pectin-cations. The optimum combination proportion was determined, the Mg2+/Ca2+-pectin matrix cross-linked graphene hydrogel (Mg2+/Ca2+-PGH) electrodes exhibited a large specific capacitance of about 839.2 F g-1 with high coulombic efficiency of 191.8% at a current density of 1 A g-1. The assembled flexible supercapacitor displayed excellent stability (capacitance retention of 98.5% after 2000 charge/discharge cycles) and flexibility (the specific capacitance remained 98.4% of its original value after 500 folding/unfolding cycles). Such flexible and high-performance Mg2+/Ca2+-PGH electrodes are attractive in the field of lightweight, miniature and wearable energy storage devices.

Keywords: Cations; Flexible electrode; Graphene hydrogel; High-performance; Pectin.