Subventricular zone lipidomic architecture loss in Huntington's disease

J Neurochem. 2018 Sep;146(5):613-630. doi: 10.1111/jnc.14468. Epub 2018 Aug 8.

Abstract

The human subventricular zone (SVZ) has a defined cytological and neurochemical architecture, with four constituent laminae that act in concert to support its neurogenic activity. Lipidomic specialisation has previously been demonstrated in the neurologically normal human SVZ, with enrichment of functionally important lipid classes in each lamina. The SVZ is also responsive to neurodegenerative disorders, where thickening of the niche and enhanced proliferation of resident cells were observed in Huntington's disease (HD) brains. In this study, we hypothesised lipidomic changes in the HD SVZ. Using matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry, this analysis shows differences in the lipidomic architecture in the post-mortem Vonsattel grade III cases. Relative to matched, neurologically normal specimens (N = 4), the lipidomic signature of the HD SVZ (N = 4) was characterized by loss of sulfatides and triglycerides in the myelin layer, with an ectopic and focal accumulation of sphingomyelins and ceramide-1-phosphate observed in this lamina. A striking loss of lipidomic patterning was also observed in the ependymal layer, where the local abundance of phosphatidylinositols was significantly reduced in HD. This comprehensive spatially resolved lipidomic analysis of the human HD SVZ identifies alterations in lipid architecture that may shed light on the mechanisms of SVZ responses to neurodegeneration in HD. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.

Keywords: MALDI; Huntington's disease; imaging mass spectrometry; lipids; neurogenesis; subventricular zone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Autopsy
  • Female
  • Fourier Analysis
  • Humans
  • Huntington Disease / pathology*
  • Lateral Ventricles / metabolism*
  • Lateral Ventricles / pathology*
  • Lipid Metabolism*
  • Lipids
  • Male
  • Mass Spectrometry
  • Middle Aged
  • Phosphoric Monoester Hydrolases
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Sphingomyelins
  • Sulfoglycosphingolipids
  • Triglycerides

Substances

  • Lipids
  • Sphingomyelins
  • Sulfoglycosphingolipids
  • Triglycerides
  • ceramide-1-phosphate phosphatase
  • Phosphoric Monoester Hydrolases