MALDI coupled to modified traveling wave ion mobility mass spectrometry for fast enantiomeric determination

J Mass Spectrom. 2018 Aug;53(8):693-699. doi: 10.1002/jms.4206.

Abstract

In this work, the use of MALDI traveling wave ion mobility spectrometry-mass spectrometry (MALDI-TWIMS-MS) for stereoselective structural analysis of direct cleavage and identification of 2-substituted piperidines obtained through solid-phase asymmetric synthesis by using heterogeneous 8-phenylmenthyl-based chiral auxiliary resins. A strategy for gas-phase chiral and structural characterization of small molecular weight molecules by using MALDI-IMS-MS technique is discussed. Because both MALDI and IMS do not directly offer chiral resolution, an easy methodology by adding a chiral phase is described to carry out in situ online ion/molecule complexation with different chiral analytes inside the mass spectrometer. Piperidine enantiomers were resolved, and separation obtained shows dependence of surface areas. To corroborate this assumption and elucidate the separation mechanism to accomplish an analytical technique by which fast determination of the chirality of molecules may be determined for a wide range organic compound applications, it was performed DFT calculations to determine the cross-sectional areas of proton-bound dimer complexes. Drift times are affected by cross-sectional areas, correlating bigger times with bigger molecular volumes during the ion mobility experiments of proton-bound dimer complexes.

Keywords: MALDI-IMS-MS; chiral; cross section; discrimination; enantiomer.