Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes

Sci Total Environ. 2018 Oct 1:637-638:1586-1596. doi: 10.1016/j.scitotenv.2018.04.436. Epub 2018 May 22.

Abstract

Climate change is resulting in increased temperatures and precipitation in subarctic regions of Europe. These changes are extending tree lines to higher altitudes and latitudes, and enhancing tree growth enabling intensification of forestry into previously inhospitable subarctic regions. The combined effects of climate change and land-use intensification extend the warm, open-water season in subarctic lakes and increase lake productivity and may also increase leaching and methylation activity of mercury within the lakes. To assess the joint effects of climate and productivity on total mercury (THg) bioaccumulation in fish, we conducted a space-for-time substitution study in 18 tributary lakes of a subarctic watercourse forming a gradient from cold pristine oligotrophic lakes in the northern headwaters to warmer and increasingly human-altered mesotrophic and eutrophic systems in the southern lower reaches. Increasing temperature, precipitation, and lake productivity were predicted to elevate length- and age-adjusted THg concentrations, as well as THg bioaccumulation rate (the rate of THg bioaccumulation relative to length or age) in muscle tissue of European whitefish (Coregonus lavaretus), vendace (Coregonus albula), perch (Perca fluviatilis), pike (Esox lucius), roach (Rutilus rutilus) and ruffe (Gymnocephalus cernua). A significant positive relationship was observed between age-adjusted THg concentration and lake climate-productivity in vendace (r2 = 0.50), perch (r2 = 0.51), pike (r2 = 0.55) and roach (r2 = 0.61). Higher climate-productivity values of the lakes also had a positive linear (pike; r2 = 0.40 and whitefish; r2 = 0.72) or u-shaped (perch; r2 = 0.64 and ruffe; r2 = 0.50) relationship with THg bioaccumulation rate. Our findings of increased adjusted THg concentrations in planktivores and piscivores reveal adverse effects of warming climate and increasing productivity on these subarctic fishes, whereas less distinct trends in THg bioaccumulation rate suggest more complex underlying processes. Joint environmental stressors such as climate and productivity should be considered in ongoing and future monitoring of mercury concentrations.

Keywords: Climate change; Heavy metal; Intensive forestry; Land use; Temperature.

MeSH terms

  • Animals
  • Climate*
  • Cyprinidae / physiology
  • Environmental Monitoring*
  • Esocidae
  • Europe
  • Fishes
  • Lakes
  • Mercury / analysis
  • Mercury / metabolism*
  • Perches / physiology
  • Salmonidae
  • Water Pollutants, Chemical / analysis
  • Water Pollutants, Chemical / metabolism*

Substances

  • Water Pollutants, Chemical
  • Mercury