Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent

J Environ Manage. 2018 Sep 1:221:1-9. doi: 10.1016/j.jenvman.2018.04.064. Epub 2018 May 26.

Abstract

Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.) as a disinfectant. There is increasing interest in using PAA for wastewater disinfection because it does not form halogenated byproducts, and no post-treatment quenching is required. Previous studies have demonstrated good efficiency in controlling bacteria in wastewater, but limited information is available for viruses, especially those hosted by mammals (e.g., norovirus). Therefore, a study on the infectivity reduction of murine norovirus (MNV) was undertaken to evaluate the disinfection efficacy of PAA or UV alone and in combination with UV irradiation in undisinfected secondary effluent from a municipal wastewater reclamation facility (MWW) and phosphate buffer solution (PBS) at pH 7. Experiments employing MS2 bacteriophage were also performed in parallel for comparison purposes. MS2 infectivity reduction was found to be lower than MNV infectivity reduction for each condition studied - PAA, PAA + UV, and UV disinfection. These data suggest that MS2 may not be an appropriate surrogate to accurately predict the reduction of MNV infectivity. UV irradiation, in a dose range of 5-250 mJ/cm2, provided linear log inactivation (-log (N/N0)) with a regression slope (cm2mJ-1) of 0.031-0.034 and 0.165-0.202 for MS2 and MNV, respectively. UV irradiation provided similar inactivation for MS2 and MNV in both suspensions (PBS or MWW). Low infectivity reduction of MS2 was observed when PAA was used alone at a practical dose of 1.5 mg/L and below. A greater reduction of both MNV and MS2 was observed in PAA disinfection experiments using PBS as the microbial suspension medium, than in secondary effluent. Similar results were observed in PAA + UV experiments, in which greater synergistic effects were found in PBS than in MWW. Results of OH radical formation experiments suggest the presence of radical scavengers in MWW, which resulted in less opportunity for MNV and MS2 to encounter OHradicals. This study also demonstrated that the type of water can have a substantial impact on wastewater disinfection when employing PAA or PAA + UV treatment due to the matrix effect and the presence of radical scavengers, respectively. The results from this study could be employed to aid in the conceptual design of PAA and UV disinfection facilities, especially when norovirus is the organism of concern.

Keywords: Norovirus; Peracetic acid; UV disinfection; Wastewater disinfection.

MeSH terms

  • Animals
  • Disinfection
  • Levivirus*
  • Mice
  • Norovirus*
  • Peracetic Acid
  • Ultraviolet Rays*
  • Wastewater*

Substances

  • Waste Water
  • Peracetic Acid