Silicon microsphere whispering gallery modes excited by femtosecond-laser-inscribed glass waveguides

Appl Opt. 2018 May 10;57(14):3687-3692. doi: 10.1364/AO.57.003687.

Abstract

We report on the coupling of whispering gallery modes in a 500-μm-radius silicon microsphere to a femtosecond-laser-inscribed glass optical waveguide. The shallow glass waveguide with a large mode field diameter in the near-infrared is written at a depth of 25 μm below the glass surface, resulting in a high excitation impact parameter of 525 μm for the microsphere. The excited whispering gallery modes of the silicon microsphere have quality factors of approximately 105 in the 90° elastic scattering and 0° transmission. Integration of such spherical silicon microresonators on femtosecond-laser-inscribed glass waveguides is promising for photonic communication, computation, and sensing applications.