Monitoring the Hydrothermal Growth of Cobalt Spinel Water Oxidation Catalysts: From Preparative History to Catalytic Activity

Chemistry. 2018 Dec 10;24(69):18424-18435. doi: 10.1002/chem.201801565. Epub 2018 Jun 26.

Abstract

The hydrothermal growth of cobalt oxide spinel (Co3 O4 ) nanocrystals from cobalt acetate precursors was monitored with in situ powder X-ray diffraction (PXRD) in combination with ex situ electron microscopy and vibrational spectroscopy. Kinetic data from in situ PXRD monitoring were analyzed using Sharp-Hancock and Gualtieri approaches, which both clearly indicate a change of the growth mechanism for reaction temperatures above 185 °C. This mechanistic transition goes hand in hand with morphology changes that notably influence the photocatalytic oxygen evolution activity. Complementary quenching investigations of conventional hydrothermal Co3 O4 growth demonstrate that these insights derived from in situ PXRD data provide valuable synthetic guidelines for water oxidation catalyst production. Furthermore, the ex situ analyses of hydrothermal quenching experiments were essential to assess the influence of amorphous cobalt-containing phases arising from the acetate precursor on the catalytic activity. Thereby, the efficient combination of a single in situ technique with ex situ analyses paves the way to optimize parameter-sensitive hydrothermal production processes of key energy materials.

Keywords: X-ray diffraction; cobalt; crystal growth; hydrothermal synthesis; spinel phases; water splitting.