Nonionic Dendritic and Carbohydrate Based Amphiphiles: Self-Assembly and Transport Behavior

Macromol Biosci. 2018 Jul;18(7):e1800019. doi: 10.1002/mabi.201800019. Epub 2018 May 21.

Abstract

Herein, a new series of non-ionic dendritic and carbohydrate based amphiphiles is synthesized employing biocompatible starting materials and studied for supramolecular aggregate formation in aqueous solution. The dendritic amphiphiles 12 and 13 possessing poly(glycerol) [G2.0] as hydrophilic unit and C-10 and C-18 hydrophobic alkyl chains, respectively, exhibit low critical aggregation concentration (CAC) in the order of 10-5 m and hydrodynamic diameters in the 8-10 nm range and supplemented by cryogenic transmission electron microscopy. Ultraviolet-visible (UV-Vis) and fluorescence spectroscopy suggests the effective solubilization of hydrophobic guests by the self-assembled architectures, with the nanotransporters 12 and 13 possessing the highest encapsulation efficiency of 80.74 and 98.03% for curcumin. Efficient uptake of encapsulated curcumin in adenocarcinomic human alveolar basal epithelial (A549) cells is observed by confocal laser scanning microscopy. Amphiphiles 12 and 13 are non-cytotoxic at the concentrations studied, however, curcumin encapsulated samples efficiently reduce the viability of A549 cells in vitro. Experimental studies indicate the ability of amphiphile 13 to encapsulate 1-anilinonaphthalene-8-sulfonic acid (ANS) and curcumin with binding constant of 1.16 × 1055 m-1 and 1.43 × 106 m-1 , respectively. Overall, our findings demonstrate the potential of these dendritic amphiphiles for the development of prospective nanocarriers for the solubilization of hydrophobic drugs.

Keywords: amphiphiles; binding studies; cytotoxicity; encapsulation; self-assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Anilino Naphthalenesulfonates / chemistry
  • Antineoplastic Agents, Phytogenic / chemistry
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Benzoates / chemistry*
  • Biocompatible Materials / chemical synthesis*
  • Biocompatible Materials / metabolism
  • Biological Transport
  • Cell Survival / drug effects
  • Curcumin / chemistry
  • Curcumin / pharmacology*
  • Drug Carriers / chemical synthesis*
  • Drug Carriers / metabolism
  • Drug Compounding / methods
  • Ethylamines / chemistry
  • Fluorescent Dyes / chemistry
  • Glycerol / chemistry*
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Microscopy, Electron, Transmission
  • Polymers / chemistry*

Substances

  • Anilino Naphthalenesulfonates
  • Antineoplastic Agents, Phytogenic
  • Benzoates
  • Biocompatible Materials
  • Drug Carriers
  • Ethylamines
  • Fluorescent Dyes
  • Polymers
  • polyglycerol
  • N,N-diisopropylethylamine
  • 1-anilino-8-naphthalenesulfonate
  • Curcumin
  • Glycerol