MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity

Nat Commun. 2018 May 18;9(1):1983. doi: 10.1038/s41467-018-04329-y.

Abstract

MLL-fusions represent a large group of leukemia drivers, whose diversity originates from the vast molecular heterogeneity of C-terminal fusion partners of MLL. While studies of selected MLL-fusions have revealed critical molecular pathways, unifying mechanisms across all MLL-fusions remain poorly understood. We present the first comprehensive survey of protein-protein interactions of seven distantly related MLL-fusion proteins. Functional investigation of 128 conserved MLL-fusion-interactors identifies a specific role for the lysine methyltransferase SETD2 in MLL-leukemia. SETD2 loss causes growth arrest and differentiation of AML cells, and leads to increased DNA damage. In addition to its role in H3K36 tri-methylation, SETD2 is required to maintain high H3K79 di-methylation and MLL-AF9-binding to critical target genes, such as Hoxa9. SETD2 loss synergizes with pharmacologic inhibition of the H3K79 methyltransferase DOT1L to induce DNA damage, growth arrest, differentiation, and apoptosis. These results uncover a dependency for SETD2 during MLL-leukemogenesis, revealing a novel actionable vulnerability in this disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Cell Differentiation
  • Cell Line, Tumor
  • DNA Damage
  • Histone-Lysine N-Methyltransferase / chemistry
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism*
  • Humans
  • Leukemia / genetics
  • Leukemia / metabolism*
  • Leukemia / physiopathology
  • Methylation
  • Methyltransferases / genetics
  • Methyltransferases / metabolism
  • Myeloid-Lymphoid Leukemia Protein / chemistry
  • Myeloid-Lymphoid Leukemia Protein / genetics
  • Myeloid-Lymphoid Leukemia Protein / metabolism*
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Oncogene Proteins, Fusion / genetics
  • Oncogene Proteins, Fusion / metabolism*
  • Protein Binding

Substances

  • KMT2A protein, human
  • MLLT3 protein, human
  • Nuclear Proteins
  • Oncogene Proteins, Fusion
  • Myeloid-Lymphoid Leukemia Protein
  • DOT1L protein, human
  • Methyltransferases
  • Histone-Lysine N-Methyltransferase
  • SETD2 protein, human