Sensorimotor Exercises and Enhanced Trunk Function: A Randomized Controlled Trial

Int J Sports Med. 2018 Jul;39(7):555-563. doi: 10.1055/a-0592-7286. Epub 2018 May 18.

Abstract

The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes.Forty-three healthy, well-trained participants were randomized into sensorimotor (SMT; n=11), resistance training (RT; n=16) and control groups (CG; n=16). Treatment groups received either sensorimotor training (SMT) or resistance training (RT) for 6 weeks, 3 times a week. At baseline and after 6 weeks of intervention, participants' maximum isokinetic strength in trunk rotation and extension was tested (concentric/eccentric 30°/s). In addition, sudden, high-intensity trunk loading was assessed for eccentric extension and rotation, with additional perturbation. Peak torque [Nm] was calculated as the outcome.Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24 Nm 95%CI±19 Nm; Rotation: +19 Nm 95%CI±13 Nm) and RT (Extension: +35 Nm 95%CI±16 Nm; Rotation: +5 Nm 95%CI±4 Nm) compared to CG (Extension: -4 Nm 95%CI±16 Nm; Rotation: -2 Nm 95%CI±4 Nm) was present (p<0.05).This study showed that isokinetic strength gains were small, but that significant improvements in high-intensity trunk loading response could be shown for both interventions. Therefore, depending on the individual's preference, therapists have two treatment options to enhance trunk function for back pain prevention.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Feedback, Sensory / physiology*
  • Female
  • Humans
  • Male
  • Muscle Strength / physiology*
  • Resistance Training / methods*
  • Rotation
  • Torso / physiology*
  • Weight-Bearing