Facile synthesis of Sb2S3/MoS2 heterostructure as anode material for sodium-ion batteries

Nanotechnology. 2018 Aug 17;29(33):335401. doi: 10.1088/1361-6528/aac645. Epub 2018 May 18.

Abstract

A novel Sb2S3/MoS2 heterostructure in which Sb2S3 nanorods are coated with MoS2 nanosheets to form a core-shell structure has been fabricated via a facile two-step hydrothermal process. The Sb2S3/MoS2 heterostructure utilized as the anode of sodium-ion batteries (SIBs) shows higher capacity, superior rate capability and better cycling performance compared with individual Sb2S3 nanorods and MoS2 nanosheets. Specifically, the Sb2S3/MoS2 electrode shows an initial reversible capacity of 701 mAh g-1 at a current density of 100 mA g-1, which then remains at 80.1% of the initial performance after 100 cycles at the same current density. This outstanding electrochemical performance indicates that the Sb2S3/MoS2 heterostructure is a very promising anode material for high-performance SIBs.