Proximity-induced magnetism and an anomalous Hall effect in Bi2Se3/LaCoO3: a topological insulator/ferromagnetic insulator thin film heterostructure

Nanoscale. 2018 May 31;10(21):10041-10049. doi: 10.1039/c8nr02083c.

Abstract

Inducing magnetism in a topological insulator (TI) by exchange coupling with a ferromagnetic insulator (FMI) will break the time-reversal symmetry of topological surface states, offering possibilities to realize several predicted novel magneto-electric effects. Seeking suitable FMI materials is crucial for the coupling of heterojunctions, and yet is challenging as well and only a few kinds have been explored. In this report, we introduce epitaxial LaCoO3 thin films on a SrTiO3 substrate, which is an insulating ferromagnet with a Curie temperature of TC ∼ 85 K, to be combined with TIs for proximity coupling. Thin films of the prototype topological insulator, Bi2Se3, are successfully grown onto the (001) surface of LaCoO3/SrTiO3, forming a high-quality TI/FMI heterostructure with a sharp interface. The magnetic and transport measurements manifest the emergence of a ferromagnetic phase in Bi2Se3 films, with additional induced moments and a suppressed weak antilocalization effect, while preserving the carrier mobility of the intrinsic Bi2Se3 films at the same time. Moreover, a signal of an anomalous Hall effect is observed and persists up to temperatures above 100 K, paving the way towards spintronic device applications.