MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3

Theranostics. 2018 Apr 15;8(10):2862-2883. doi: 10.7150/thno.23547. eCollection 2018.

Abstract

Histone deacetylase 3 (HDAC3) plays a pivotal role in the repression of cartilage-specific gene expression in human chondrocytes. The aim of this study was to determine whether microRNA-193b-3p (miR-193b-3p) regulates the expression of HDAC3 during chondrogenesis and chondrocyte metabolism. Methods: miR-193b-3p expression was assessed in a human mesenchymal stem cell (hMSC) model of chondrogenesis, in interleukin-1β (IL-1β)-treated primary human chondrocytes (PHCs), and in non-degraded and degraded cartilage. hMSCs and PHCs were transfected with miR-193b-3p or its antisense inhibitor. A direct interaction between miR-193b-3p and its putative binding site in the 3'-untranslated region (3'-UTR) of HDAC3 mRNA was confirmed by performing luciferase reporter assays. Chondrocytes were transfected with miR-193b-3p before performing a chromatin immunoprecipitation assay with an anti-acetylated histone H3 antibody. To investigate miR-193b-3p-transfected PHCs in vivo, they were seeded in tricalcium phosphate-collagen-hyaluronate (TCP-COL-HA) scaffolds, which were then implanted in nude mice. In addition, plasma exosomal miR-193b-3p in samples from normal controls and patients with osteoarthritis (OA) were measured. Results: miR-193b-3p expression was elevated in chondrogenic and hypertrophic hMSCs, while expression was significantly reduced in degraded cartilage compared to non-degraded cartilage. In addition, miR-193b-3p suppressed the activity of reporter constructs containing the 3'-UTR of HDAC3, inhibited HDAC3 expression, and promoted histone H3 acetylation in the COL2A1, AGGRECAN, COMP, and SOX9 promoters. Treatment with the HDAC inhibitor trichostatin A (TSA) increased cartilage-specific gene expression and enhanced hMSCs chondrogenesis. TSA also increased AGGRECAN expression and decreased MMP13 expression in IL-1β-treated PHCs. Further, 8 weeks after implanting PHC-seeded TCP-COL-HA scaffolds subcutaneously in nude mice, we found that miR-193b overexpression strongly enhanced in vivo cartilage formation compared to that found under control conditions. We also found that patients with OA had lower plasma exosomal miR-193b levels than control subjects. Conclusions: These findings indicate that miR-193b-3p directly targets HDAC3, promotes H3 acetylation, and regulates hMSC chondrogenesis and metabolism in PHCs.

Keywords: HDAC3; cartilage; chondrogenesis; histone acetylation; microRNA-193b-3p.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions
  • Adult
  • Aged
  • Animals
  • Cells, Cultured
  • Chondrocytes / cytology
  • Chondrocytes / drug effects
  • Chondrocytes / metabolism*
  • Chondrocytes / transplantation
  • Chondrogenesis*
  • Exosomes / metabolism
  • Female
  • Histone Deacetylase Inhibitors / pharmacology
  • Histone Deacetylases / genetics*
  • Histone Deacetylases / metabolism
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Middle Aged
  • Regeneration

Substances

  • 3' Untranslated Regions
  • Histone Deacetylase Inhibitors
  • MIRN193 microRNA, human
  • MicroRNAs
  • Histone Deacetylases
  • histone deacetylase 3