Efficient zinc uptake is critical for the ability of Pseudomonas aeruginosa to express virulence traits and colonize the human lung

J Trace Elem Med Biol. 2018 Jul:48:74-80. doi: 10.1016/j.jtemb.2018.03.009. Epub 2018 Mar 14.

Abstract

We have recently shown that Pseudomonas aeruginosa, an opportunistic pathogen that chronically infects the lungs of patients with cystic fibrosis (CF) and other forms of lung disease, is extremely efficient in recruiting zinc from the environment and that this capability is required for its ability to cause acute lung infections in mice. To verify that P. aeruginosa faces zinc shortage when colonizing the lungs of human patients, we analyzed the expression of three genes that are highly induced under conditions of zinc deficiency (zrmA, dksA2 and rpmE2), in bacteria in the sputum of patients with inflammatory lung disease. All three genes were expressed in all the analyzed sputum samples to a level much higher than that of bacteria grown in zinc-containing laboratory medium, supporting the hypothesis that P. aeruginosa is under zinc starvation during lung infections. We also found that the expression of several virulence traits that play a central role in the ability of P. aeruginosa to colonize the lung is affected by disruption of the most important zinc importing systems. Virulence features dependent on zinc intake include swarming and swimming motility and the ability to form biofilms. Furthermore, alterations in zinc assimilation interfere with the synthesis of the siderophore pyoverdine, suggesting that zinc recruitment could modulate iron uptake and affect siderophore-mediated cell signaling. Our results reveal that zinc uptake is likely to play a key role in the ability of P. aeruginosa to cause chronic lung infections and strongly modulates critical virulence traits of the pathogen. Taking into account the recent discovery that zinc uptake in P. aeruginosa is promoted by the release of a small molecular weight molecule showing high affinity for zinc, our data suggest novel and effective possibilities to control lung infections by these bacteria.

Keywords: Cystic fibrosis; Pseudomonas aeruginosa; Pyoverdine; Virulence factors; Zinc; Zinc import.

MeSH terms

  • Cystic Fibrosis / metabolism*
  • Gene Expression Profiling
  • Humans
  • Lung Diseases / metabolism*
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / metabolism*
  • Pseudomonas aeruginosa / pathogenicity*
  • Virulence
  • Zinc / metabolism*

Substances

  • Zinc