Nucleocytoplasmic shuttling: The ins and outs of quantitative imaging

Clin Exp Pharmacol Physiol. 2018 Oct;45(10):1087-1094. doi: 10.1111/1440-1681.12969.

Abstract

Nucleocytoplasmic protein shuttling is integral to the transmission of signals between the nucleus and the cytoplasm. The nuclear/cytoplasmic distribution of proteins of interest can be determined via fluorescence microscopy, following labelling of the target protein with fluorophore-conjugated antibodies (immunofluorescence) or by tagging the target protein with an autofluorescent protein, such as green fluorescent protein (GFP). The latter enables live cell imaging, a powerful approach that precludes many of the artefacts associated with indirect immunofluorescence in fixed cells. In this review, we discuss important considerations for the design and implementation of fluorescence microscopy experiments to quantify the nuclear/cytoplasmic distribution of a protein of interest. We summarise the pros and cons of detecting endogenous proteins in fixed cells by immunofluorescence and ectopically-expressed fluorescent fusion proteins in living cells. We discuss the suitability of widefield fluorescence microscopy and of 2D, 3D and 4D imaging by confocal microscopy for different applications, and describe two different methods for quantifying the nuclear/cytoplasmic distribution of a protein of interest from the fluorescent signal. Finally, we discuss the importance of eliminating sources of bias and subjectivity during image acquisition and post-imaging analyses. This is critical for the accurate and reliable quantification of nucleocytoplasmic shuttling.

Keywords: confocal imaging; live cell imaging; microscopy; nuclear export; nucleocytoplasmic shuttling; quantitative imaging.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Active Transport, Cell Nucleus
  • Animals
  • Cell Nucleus / metabolism*
  • Image Processing, Computer-Assisted
  • Molecular Imaging / methods*
  • Protein Transport