Enhanced Corrosion Resistance and Interfacial Conductivity of TiC x/a-C Nanolayered Coatings via Synergy of Substrate Bias Voltage for Bipolar Plates Applications in PEMFCs

ACS Appl Mater Interfaces. 2018 Jun 6;10(22):19087-19096. doi: 10.1021/acsami.8b00514. Epub 2018 May 25.

Abstract

Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x/amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x/a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x/a-C coatings would provide new opportunities for commercial bipolar plates.

Keywords: amorphous carbon coatings; bias voltage; corrosion protection; fuel cell; interfacial contact resistance.