Graphene platelets enhanced pressureless- sintered B4C ceramics

R Soc Open Sci. 2018 Apr 11;5(4):171837. doi: 10.1098/rsos.171837. eCollection 2018 Apr.

Abstract

B4C ceramics with different contents of graphene platelets (GPL) were synthesized by a pressureless process in Ar atmosphere. The influences of GPL on mechanical properties, thermal conductivity and electrical resistivity of the B4C ceramics were investigated. Mechanical properties ran up to optimal condition with hardness of 29.1 GPa, bending strength of 383.9 GPa and fracture toughness of 5.72 MPa m1/2 with 0.8 wt% GPL separately. Thermal conductivity and electrical resistivity reached extreme values of 26.35 W m-1 k-1 and 0.1 Ω cm-1. Performances of the ceramics were mainly affected by the generation of non-functional-GPL and the result indicated that a large amount of non-functional-GPL could contribute to poorer overall performance. Meanwhile, two particular pullout mechanisms concerning toughness enhancing was discussed in detail.

Keywords: B4C ceramic; graphene platelets; mechanical; pressureless-sintered.