The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: Challenges and opportunities

Restor Neurol Neurosci. 2018;36(3):333-348. doi: 10.3233/RNN-170801.

Abstract

Neuroplasticity is a fundamental yet relatively unexplored process that can impact rehabilitation of lower extremity (LE) movements. Transcranial magnetic stimulation (TMS) has gained widespread application as a non-invasive brain stimulation technique for evaluating neuroplasticity of the corticospinal pathway. However, a majority of TMS studies have been performed on hand muscles, with a paucity of TMS investigations focused on LE muscles. This perspective review paper proposes that there are unique methodological challenges associated with using TMS to evaluate corticospinal excitability of lower limb muscles. The challenges include: (1) the deeper location of the LE motor homunculus; (2) difficulty with targeting individual LE muscles during TMS; and (3) differences in corticospinal circuity controlling upper and lower limb muscles. We encourage future investigations that modify traditional methodological approaches to help address these challenges. Systematic TMS investigations are needed to determine the extent of overlap in corticomotor maps for different LE muscles. A simple, yet informative methodological solution involves simultaneous recordings from multiple LE muscles, which will provide the added benefit of observing how other relevant muscles co-vary in their responses during targeted TMS assessment directed toward a specific muscle. Furthermore, conventionally used TMS methods (e.g., determination of hot spot location and motor threshold) may need to be modified for TMS studies involving LE muscles. Additional investigations are necessary to determine the influence of testing posture as well as activation state of adjacent and distant LE muscles on TMS-elicited responses. An understanding of these challenges and solutions specific to LE TMS will improve the ability of neurorehabilitation clinicians to interpret TMS literature, and forge novel future directions for neuroscience research focused on elucidating neuroplasticity processes underlying locomotion and gait training.

Keywords: Neuroplasticity; gait; homunculus; leg muscles; motor cortex; non-invasive brain stimulation; posture.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Evoked Potentials, Motor / physiology*
  • Hand / physiology
  • Humans
  • Lower Extremity / physiology*
  • Motor Cortex / physiology
  • Neuronal Plasticity / physiology*
  • Transcranial Magnetic Stimulation*