Collective Dynamics and Strong Pinning near the Onset of Charge Order in La_{1.48}Nd_{0.4}Sr_{0.12}CuO_{4}

Phys Rev Lett. 2018 Apr 13;120(15):156602. doi: 10.1103/PhysRevLett.120.156602.

Abstract

The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La_{1.48}Nd_{0.4}Sr_{0.12}CuO_{4} by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R, are revealed only when the critical region is approached from the charge-ordered phase. Our results on La_{1.48}Nd_{0.4}Sr_{0.12}CuO_{4} provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.