Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change

Sci Total Environ. 2018 Feb 15:615:1355-1363. doi: 10.1016/j.scitotenv.2017.09.044. Epub 2017 Oct 17.

Abstract

The importance of water quantity for domestic and industrial water supply, agriculture, and the economy more broadly has led to the development of many water quantity assessment methods. In this study, surface flow and soil water in the forested upper reaches of the Yoshino River are compared using a distributed hydrological model with Forest Maintenance Module under two scenarios; before and after forest maintenance. We also examine the impact of forest maintenance on these variables during extreme droughts. Results show that surface flow and soil water increased after forest maintenance. In addition, projections of future water resources were estimated using a hydrological model and the output from a 20km mesh Global Climate Model (GCM20). River discharge for the near-future (2015-2039) is similar to that of the present (1979-2003). Estimated river discharge for the future (2075-2099) was found to be substantially more extreme than in the current period, with 12m3/s higher peak discharge in August and 7m3/s lower in July compared to the discharges of the present period. Soil water for the future is estimated to be lower than for the present and near future in May. The methods discussed in this study can be applied in other regions and the results help elucidate the impact of forests and climate change on water resources.

Keywords: Climate change; Drought; Forest maintenance; Soil water; Surface flow.