[Human-robot global Simulink modeling and analysis for an end-effector upper limb rehabilitation robot]

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Feb 25;35(1):8-14. doi: 10.7507/1001-5515.201703070.
[Article in Chinese]

Abstract

Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant's functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists' experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients' movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.

机器人康复训练是解决中风瘫痪患者康复训练需求的重要方法,康复机器人设定的训练参数对患者能力的适应程度是决定训练能否加快患者康复进程的重要因素。目前临床上的康复训练内容由康复医师对患者进行量表评估并结合自己的经验制定,这种经验式的训练方法在康复机器人训练过程中无法实现。为了探讨上肢康复机器人运动训练参数与患者运动能力之间的关系,本文建立了牵引式上肢康复机器人训练的 Simulink 人机整体模型,并将模型计算的人体肩关节、肘关节运动与实际动作下的肩关节、肘关节运动进行了对照。分析显示仿真结果与实验数据存在明显的相关性,从而证明了模型的准确性。进一步地,本文根据模型仿真结果拟合了人机接触端平面画圆半径与人体肩关节、肘关节主动运动自由度的线性函数关系,为临床上康复机器人制定训练目标提供了量化参考。.

Keywords: end-effector upper limb rehabilitation robots; human-robot global Simulink model; planar movement; training trajectory.

Publication types

  • English Abstract

Grants and funding

国家自然科学基金(U1613207)