An overview of graphene-based hydroxyapatite composites for orthopedic applications

Bioact Mater. 2018 Feb 3;3(1):1-18. doi: 10.1016/j.bioactmat.2018.01.001. eCollection 2018 Mar.

Abstract

Hydroxyapatite (HA) is an attractive bioceramic for hard tissue repair and regeneration due to its physicochemical similarities to natural apatite. However, its low fracture toughness, poor tensile strength and weak wear resistance become major obstacles for potential clinical applications. One promising method to tackle with these problems is exploiting graphene and its derivatives (graphene oxide and reduced graphene oxide) as nanoscale reinforcement fillers to fabricate graphene-based hydroxyapatite composites in the form of powders, coatings and scaffolds. The last few years witnessed increasing numbers of studies on the preparation, mechanical and biological evaluations of these novel materials. Herein, various preparation techniques, mechanical behaviors and toughen mechanism, the in vitro/in vivo biocompatible analysis, antibacterial properties of the graphene-based HA composites are presented in this review.

Keywords: Biomedical devices; Bone tissue; Composites; Graphene; Hydroxyapatite.

Publication types

  • Review