Membrane Bending Moduli of Coexisting Liquid Phases Containing Transmembrane Peptide

Biophys J. 2018 May 8;114(9):2152-2164. doi: 10.1016/j.bpj.2018.03.026.

Abstract

A number of highly curved membranes in vivo, such as epithelial cell microvilli, have the relatively high sphingolipid content associated with "raft-like" composition. Given the much lower bending energy measured for bilayers with "nonraft" low sphingomyelin and low cholesterol content, observing high curvature for presumably more rigid compositions seems counterintuitive. To understand this behavior, we measured membrane rigidity by fluctuation analysis of giant unilamellar vesicles. We found that including a transmembrane helical GWALP peptide increases the membrane bending modulus of the liquid-disordered (Ld) phase. We observed this increase at both low-cholesterol fraction and higher, more physiological cholesterol fraction. We find that simplified, commonly used Ld and liquid-ordered (Lo) phases are not representative of those that coexist. When Ld and Lo phases coexist, GWALP peptide favors the Ld phase with a partition coefficient of 3-10 depending on mixture composition. In model membranes at high cholesterol fractions, Ld phases with GWALP have greater bending moduli than the Lo phase that would coexist.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Biomechanical Phenomena
  • Cell Membrane / chemistry
  • Cell Membrane / metabolism*
  • Cholesterol / metabolism
  • Mechanical Phenomena*
  • Models, Molecular
  • Oligopeptides / chemistry*
  • Oligopeptides / metabolism*
  • Protein Conformation, alpha-Helical

Substances

  • Oligopeptides
  • Cholesterol