Quaternized Q-PEIPAAm-Based Antimicrobial Reverse Thermal Gel: A Potential for Surgical Incision Drapes

ACS Appl Mater Interfaces. 2018 May 30;10(21):17662-17671. doi: 10.1021/acsami.8b04020. Epub 2018 May 16.

Abstract

A quaternized reverse thermal gel (RTG) aimed at replacing current surgical incision drapes (SIDs) was designed and characterized. The antimicrobial efficacy of the quaternized RTG was analyzed using both in vitro and in vivo models and was compared to standard SIDs. Polymer characterization was completed using both nuclear magnetic resonance (1H NMR) and lower critical solution temperature (LCST) analysis. Biocompatibility was assessed using a standard cell viability assay. The in vitro antimicrobial efficacy of the polymer was analyzed against four common bacteria species using a time-kill test. The in vivo antimicrobial efficacy of the polymer and standard SIDs were compared using a murine model aimed at mimicking surgical conditions. NMR confirmed the polymer structure and presence of quaternized groups and alkyl chains. The polymer displayed a LCST of 34 °C and a rapid rate of gelation, allowing stable gel formation when applied to skin. Once quaternized, the polymer displayed an increase in kill-rate of bacteria compared to unquaternized polymer. In experiments aimed at mimicking surgical conditions, the quaternized polymer showed statistically comparable bacteria-killing capacity to the standard SID and even surpassed the SID for killing capacity at various time points. A novel approach to replacing current SIDs was developed using an antimicrobial polymer system with RTG properties. The RTG properties of this polymer maintain a liquid state at low temperatures and a gel upon heating, allowing this polymer to form a tight coating when applied to skin. Furthermore, this polymer achieved excellent antimicrobial properties in both in vitro and in vivo models. With further optimization, this polymer system has the potential to replace and streamline presurgical patient preparations through its easy application and beneficial antimicrobial properties.

Keywords: antimicrobial polymer; quaternized amine groups; reverse thermal gel; surgical drapes; surgical site infections.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry*
  • Bacteria
  • Mice
  • Organophosphorus Compounds
  • Polymers
  • Surgical Wound

Substances

  • Anti-Bacterial Agents
  • Organophosphorus Compounds
  • Polymers
  • poly(ethylalanatoimidazolylphosphazene)