Stable Metallic State of a Neutral-Radical Single-Component Conductor at Ambient Pressure

J Am Chem Soc. 2018 Jun 6;140(22):6998-7004. doi: 10.1021/jacs.8b03714. Epub 2018 May 24.

Abstract

Molecular metals have been essentially obtained with tetrathiafulvalene (TTF)-based precursors, either with multicomponent ionic materials or, in a few instances, with single-component systems. In that respect, gold bis(dithiolene) complexes, in their neutral radical state, provide a prototype platform toward such single-component conductors. Herein we report the first single-component molecular metal under ambient pressure derived from such Au complexes without any TTF backbone. This complex exhibits a conductivity of 750 S·cm-1 at 300 K up to 3800 S·cm-1 at 4 K. First-principles electronic structure calculations show that the striking stability of the metallic state finds its origin in sizable internal electron transfer from the SOMO-1 to the SOMO of the complex as well as in substantial interstack and interlayer interactions.

Publication types

  • Research Support, Non-U.S. Gov't