Homeostasis: apoptosis and cell cycle in normal and pathological prostate

Aging Male. 2020 Dec;23(5):335-345. doi: 10.1080/13685538.2018.1470233. Epub 2018 May 6.

Abstract

Prostatic diseases such as hyperplasia and cancer are a consequence of glandular aging due to the loss of homeostasis. Glandular homeostasis is guaranteed by the delicate balance between production and cell death. Both cell renewal and apoptosis are part of this delicate balance. We will explore the predictive capacity for biochemical progression, following prostatectomy, of some members of the Bcl-2 family and of proteins involved in cell cycle inhibition in conjunction with established classical markers. The expression of Bcl-2, Bcl-xL, Mcl-1, Bax, Bim, Bad, PUMA, Noxa, p21, p27, Rb and p53 were analyzed by immunochemistry in 86 samples of radical prostatectomy and correlated with each of the markers established clinicopathological tests using statistical tests such as Sperman, Kaplan-Meier curves, unifactorial Cox, and multifactorial. The most relevant results are: (1) Positive correlation between: p27 with clinical T stage; and PUMA with pathological T stage; (2) Negative correlation between: Bcl-2 with clinical T stage, Bcl-xL with survival, Noxa and pRb with Gleason score.Our results suggest that the expression of Bcl-2, Bcl-xL, PUMA, Noxa, p27, and Rb were related to some of the classic markers established to predict biochemical progression after prostatectomy.

Keywords: Homeostasis; apoptosis; biochemical progression; cell cycle; prostate cancer.

MeSH terms

  • Apoptosis*
  • Cell Cycle
  • Homeostasis
  • Humans
  • Male
  • Prostate*
  • Prostatectomy