Spatially Uniform Tumor Treatment and Drug Penetration by Regulating Ultrasound with Microbubbles

ACS Appl Mater Interfaces. 2018 May 30;10(21):17784-17791. doi: 10.1021/acsami.8b05508. Epub 2018 May 15.

Abstract

Tumor microenvironment has different morphologies of vessels in the core and rim regions, which influences the efficacy of tumor therapy. Our study proposed to improve the spatial uniformity of the antivascular effect and drug penetration within the tumor core and rim in combination therapies by regulating ultrasound-stimulated microbubble destruction (USMD). Focused ultrasound at 2 MHz and lipid-shell microbubbles (1.12 ± 0.08 μm, mean ± standard deviation) were used to perform USMD. The efficiency of the antivascular effect was evaluated by intravital imaging to determine the optimal USMD parameters. Tumor perfusion and histological alterations in the tumor core and rim were used to analyze the spatial uniformity of the antivascular effect and liposomal-doxorubicin (5 mg/kg) penetration in the combination therapy. Tumor vessels of specific sizes were disrupted by regulating USMD: vessels with sizes of 11 ± 3, 14 ± 5, 19 ± 7, and 23 ± 10 μm were disrupted by stimulation at acoustic pressures of 3, 5, 7, and 9 MPa, respectively (each p < 0.05). The effective treatment time of USMD (at 2 × 107 microbubbles/mouse, 7 MPa, and three cycles) was 60-120 min, which resulted in the disruption of 21-44% of vessels smaller than 50 μm. The reductions in perfusion and vascular density after combination therapy did not differ significantly between the tumor core and rim. This study found that regulating USMD can result in homogeneous antivascular effects and drug penetration within tumors and thereby improve the efficacy of combination therapies.

Keywords: antivascular effect; drug penetration; microbubbles; tumor core and rim; uniform treatment.

MeSH terms

  • Acoustics
  • Animals
  • Combined Modality Therapy
  • Contrast Media
  • Mice
  • Microbubbles
  • Neoplasms*
  • Ultrasonography

Substances

  • Contrast Media