[Gene method for inconsistent hydrological frequency calculation. 2: Diagnosis system of hydrological genes and method of hydrological moment genes with inconsistent characters]

Ying Yong Sheng Tai Xue Bao. 2018 Apr;29(4):1033-1041. doi: 10.13287/j.1001-9332.201804.010.
[Article in Chinese]

Abstract

The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.

非一致性水文频率分析是变化环境下工程水文计算需要解决的主要问题之一.本文从随机水文序列组成的角度,将不同时间尺度下的非一致性水文现象概化为具有遗传、变异与进化特性或规律的水文过程,据此借鉴生物基因理论提出水文基因的概念,并定义常规矩基因为水文序列的各阶原点矩和中心矩.为了识别与检验水文基因的各组成成分,创建了水文基因诊断系统.为了阐述水文基因的遗传、变异与进化原理,以P-Ⅲ分布为例详细描述了常规矩基因的构建与表达过程.以澜沧江流域允景洪站年最小1月流量序列为例,对上述基于常规矩基因的非一致性水文频率计算方法进行了可行性和实用性验证.结果表明: 该方法能以水文基因变异识别为基础,揭示非一致性水文序列的演变规律,不仅为变化环境下工程水文计算提供了新的研究途径,也能为水安全评价提供重要的参考依据.

Keywords: evolution principle; hydrological frequency; hydrological gene; moment; non-consistency.

MeSH terms

  • Genes*
  • Hydrology
  • Rivers
  • Water
  • Water Movements*

Substances

  • Water