NHERF1 and tumor microenvironment: a new scene in invasive breast carcinoma

J Exp Clin Cancer Res. 2018 May 2;37(1):96. doi: 10.1186/s13046-018-0766-7.

Abstract

Background: Tumor microenvironment (TME) includes many factors such as tumor associated inflammatory cells, vessels, and lymphocytes, as well as different signaling molecules and extracellular matrix components. These aspects can be de-regulated and consequently lead to a worsening of cancer progression. In recent years an association between the scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) and tumor microenvironment changes in breast cancer (BC) has been reported.

Methods: Subcellular NHERF1 localization, vascular endothelial growth factor (VEGF), its receptor VEGFR1, hypoxia inducible factor 1 alpha (HIF-1α), TWIST1 expression and microvessel density (MVD) in 183 invasive BCs were evaluated, using immunohistochemistry on tissue microarrays (TMA). Immunofluorescence was employed to explore protein interactions.

Results: Cytoplasmic NHERF1(cNHERF1) expression was directly related to cytoplasmic VEGF and VEGFR1 expression (p = 0.001 and p = 0.027 respectively), and inversely to nuclear HIF-1α (p = 0.021) and TWIST1 (p = 0.001). Further, immunofluorescence revealed an involvement of tumor cells with NHERF1 positive staining in neo-vascular formation, suggesting a "mosaic" structure development of these neo-vessels. Survival analyses showed that loss of nuclear TWIST1 (nTWIST1) expression was related to a decrease of disease free survival (DFS) (p < 0.001), while nTWIST1-/mNHERF1+ presented an increased DFS with respect to nTWIST1+/mNHERF1- phenotype (p < 0.001). Subsequently, the analyses of nTWIST1+/cNHERF1+ phenotype selected a subgroup of patients with a worse DFS compared to nTWIST1-/cNHERF1- patients (p = 0.004).

Conclusion: Resulting data suggested a dynamic relation between NHERF1 and TME markers, and confirmed both the oncosuppressor role of membranous NHERF1 expression and the oncogene activity of cytoplasmic NHERF1.

Keywords: Breast cancer; Immunohistochemical; NHERF1; Tissue microarray; Tumor microenvironment.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / pathology
  • Breast Neoplasms / therapy*
  • Female
  • Humans
  • Immunohistochemistry / methods*
  • Middle Aged
  • Phosphoproteins / metabolism*
  • Sodium-Hydrogen Exchangers / metabolism*
  • Tissue Array Analysis / methods*
  • Tumor Microenvironment
  • Young Adult

Substances

  • Phosphoproteins
  • Sodium-Hydrogen Exchangers
  • sodium-hydrogen exchanger regulatory factor